-
CNN : NN인데 image에 특화했다.
-
back propagation
-
convnet -> conveolutional layer, relu, pooling layer, fully connected layer
-
image가 가진 특징만 뽑아?
-
trend towards smaller filters and deeper architectures
-
trend towards getting rid of POOL/FC layers
-
conv layer and pool layer
-
set of pixel을 가지고 weight를 준다
-
mpeg, jpeg 압축알고리즘을 보면 화면을 블럭단위로 계산하니까
-
마찬가지로 정한 pixel의 값이 크게 바뀌지 않으니까. 그걸로 optimize하자
-
regular 3-layer Neural network vs ConvNet
-
Convolution Layer
-
image 32x32x3 image, -> 5x5x3 filter
-
convolve the filter with the image
-
3d: width height depth
-
32x32x3 image, 5x5x3 filter w
-
W^Tx _ b
-
activation map: convolve(slide) over all spatial locations
-
number of filter is also hyperparameter
-
stack up activation maps
-
32x32x3 image -> 5x5x3 filter -> 28x28 activation map
-
6 filters produce 6 independet activation map
-
example 7x7 image -> 3x3 filter
-
5x5 output
-
hyper parameter: size of filter, stride,
-
7x7 input, 3x3 filter, 2 stride,
-
if stride 3, won’t fit -> cannot apply 3x3 filter on 7x7 input
-
0 padding ->
-
which filter get?
-
fitler도 learning의 대상, Filter가 Weight값이다.
-
Random initialze하고 back propagation해서 learn한다
-
data preprocessing도 learning한다.
-
example of learning (N-F)/stride + 1
-
w1h1d1 -> F -> w2h2d2
-
fx, sx, px - filter, stride, zeropadding
-
Pooling Layer
- make the presenatations smaller and more manageable
- operates over each activation map indendently
-
Max pooling
- 4x4 -> 2x2 filter:2 stride:2
- max pooling: get the biggest number
- trend not to use it
- polling -> only to reduce the computation?
-
small stride first, large stride later
-
Pooling Layer
-
앙상블,
Posted on:December 13, 2016 at 12:00 AM
Deep Learning Study Ch#04
Popular
Latest
Mecab ko와 은전한닢 프로젝트 사전 설치하기
Sep 10, 2023
Accessing Google Cloud SQL from Local Machine with Cloud SQL Auth Proxy
Jun 26, 2023
How to remove "the gcp auth plugin is deprecated in v1.22+"
May 12, 2023
How to run Alpaca.cpp
Mar 27, 2023
Direnv with .env file
Jan 4, 2023
Securing Mongo DB
Jan 2, 2023
Postgres Useful Tips
Aug 27, 2022
Tag Cloud
c
svn
python
3d
ruby-on-rails
machine-learning
kubernetes
webgl
opengl
mfc
mysql
postgres
trac
dreamhost
wipi-c
gdc
php
subversion
hlsl
shader
docker
gcp
cpp
giga
siggraph
webvr
cg
glsl
syntax-highlight
visual-studio
cgfx
mac
unity3d
maya
ui
nlp
react
redis
parquet
ubuntu
sk-telecom
unity
mobile
jquery
high-performance-computing
digital-content-creation
google-maps
rabbitmq
argo
snowflake
data-engineering
big-data
reactjs