Posted on:December 13, 2016 at 12:00 AM

Deep Learning Study Ch#04

Deep Learning Study Ch#04
  • CNN : NN인데 image에 특화했다.

  • back propagation

  • convnet -> conveolutional layer, relu, pooling layer, fully connected layer

  • image가 가진 특징만 뽑아?

  • trend towards smaller filters and deeper architectures

  • trend towards getting rid of POOL/FC layers

  • conv layer and pool layer

  • set of pixel을 가지고 weight를 준다

  • mpeg, jpeg 압축알고리즘을 보면 화면을 블럭단위로 계산하니까

  • 마찬가지로 정한 pixel의 값이 크게 바뀌지 않으니까. 그걸로 optimize하자

  • regular 3-layer Neural network vs ConvNet

  • Convolution Layer

  • image 32x32x3 image, -> 5x5x3 filter

  • convolve the filter with the image

  • 3d: width height depth

  • 32x32x3 image, 5x5x3 filter w

  • W^Tx _ b

  • activation map: convolve(slide) over all spatial locations

  • number of filter is also hyperparameter

  • stack up activation maps

  • 32x32x3 image -> 5x5x3 filter -> 28x28 activation map

  • 6 filters produce 6 independet activation map

  • example 7x7 image -> 3x3 filter

  • 5x5 output

  • hyper parameter: size of filter, stride,

  • 7x7 input, 3x3 filter, 2 stride,

  • if stride 3, won’t fit -> cannot apply 3x3 filter on 7x7 input

  • 0 padding ->

  • which filter get?

  • fitler도 learning의 대상, Filter가 Weight값이다.

  • Random initialze하고 back propagation해서 learn한다

  • data preprocessing도 learning한다.

  • example of learning (N-F)/stride + 1

  • w1h1d1 -> F -> w2h2d2

  • fx, sx, px - filter, stride, zeropadding

  • Pooling Layer

    • make the presenatations smaller and more manageable
    • operates over each activation map indendently
  • Max pooling

    • 4x4 -> 2x2 filter:2 stride:2
    • max pooling: get the biggest number
    • trend not to use it
    • polling -> only to reduce the computation?
  • small stride first, large stride later

  • Pooling Layer

  • 앙상블,